Search
- PRIVACY STATEMENT: https://ec.europa.eu/info/privacy-policy_en
EU FASTNET PROJECT CALCULATIONS
ENTER DESCRIPTION OF FACILITY HERE
To study the behavior of the PCCS configuration planned to be used in the ABWR II concept and to gain experimental data for the validation work of MELCOR severe accident code, a scaled down PCCS model was designed and constructed at Lappeenranta University of Technology in Finland in 2012–2013.
PACTEL is a volumetrically scaled (1: 305) facility including a pressurizer, high and low pressure emergency core cooling systems, and accumulators. The reactor vessel is simulated with a U-tube construction including separate downcomer and core sections.
The PWR PACTEL facility consists of a reactor pressure vessel model, two loops with vertical steam generators, a pressurizer, and emergency core cooling systems. The new loops and steam generators of EPR style construction enable the PWR and EPR related experimental research.
New activities related with Nuclear Safety research will be soon published in the new STRESA website.
STRESA related activities are coming. Check frequently this website to be up to date!
The new STRESA becomes public replacing the previous version.
Meeting to evaluate the status of the information system and the problems encountered.
The LOBI Project originated from a reactor safety research and development contract between the European Commission and the former Bundesminister für Forschung und Technologie of the Federal Republic of Germany.
Complex measurements were performed at the integral high temperature test facility CODEX (COre Degradation Experiment) between 1995-2002 with electrically heated UO2 fuel rod bundles. The test matrix included the first VVER-440 type integral severe accident experiment.
Since the core meltdown accident in the Three Mile Island reactor in 1979, a series of experimental safety research programmes has been conducted by a number of international research organisations, including the IRSN, which manages the European SARNET network.
This programme is dedicated to studying iodine chemistry under thermal non equilibrium (impact of chemical kinetics) in the primary cooling system in the event of a core meltdown accident in a water reactor.
The CHIP programme follows two axes which respectivly aims to: