Skip to main content
Storage of Thermal REactor Safety Analysis data
Displaying 1 - 2 of 2 results
Organization
CEA
Type of Facility
Source Term
Experiments available
0
Description:

VERDON programme has been launched by the CEA as a follow-up of VERCORS programme. It addresses the consequences of a degradation of fuel elements in contact with air following penetration of the vessel after the meltdown of part of the reactor core or the dewatering of a spent fuel storage pit, especially the release and chemical behaviour of ruthenium (tests of release of fission products have been held under EPICUR programme as well).

The data base on Ru release under air ingress conditions from irradiated PWR fuel rods was still scarce, as in the VERCORS programme, few tests have been performed in very oxidising conditions and more particularly under air ingress with significant amount of air. In this context, VERDON programme included specific air ingress test on a genuine irradiated UO2 fuel sample in its original cladding. As in VERCORS programme, the sample has been previously reirradiated at low power in a MTR reactor, in order to rebuild the inventory of short halflife fission products (including 103Ru). This test has been conducted in a new dedicated hot cell. The aim was not only to measure the release of fission products, but also to study their deposit on thermal gradient tubes and their potential revolatilisation induced by air injection. Compared to VERCORS, VERDON included by more detailed examinations of the fuel sample before and after the tests, using microanalytical techniques, such as SEM, EPMA and SIMS in order to determine the location of the fission products within the various phases as well as the corresponding compounds if possible. This gave better understanding of the mechanisms, which promote fission products release in such situations, as well as supported the associated modelling. VERDON programme is a part of the International Source Term Programme, which is composed of separate effect tests aiming at reducing uncertainties in severe accident analyses.
Facility is in operation.

Organization
Type of Facility
Source Term
Experiments available
1
Description:

In severe accidents with primary-to-secondary leakages, the retention of fission products in horizontal steam generators is poorly understood. The understanding of fission product deposition in realistic steam generator conditions is needed in realistic release estimates in PSA studies, and to design efficient accident management procedures. This is considered very important because steam generator tube rupture sequences are included in the risk dominant sequences.



Tube dimensions of the HORIZON model steam generator and Loviisa VVER-440 steam generators are approximately same. Thus it can be assumed that experiments give realistic results.



In addition to the steam generator section itself, the HORIZON facility includes a lot of equipment needed for steam and aerosol generation, and for measuring the thermal-hydraulic parameters as well as the aerosols concentrations.



The inlet and outlet chamber aerosol mass concentration is monitored with Tapered Element Oscillating Microbalance (TEOM) on-line mass monitor and the particle size distribution is measured on-line with the Electrical Low Pressure Impactor (ELPI). Aerosol sampling system includes heated sampling lines, two diluters (first diluter in system pressure is computer controlled and uses heated dilution air), pressure reducer and sampling valves. It is possible to change sampling point between inlet and outlet chambers.

Facility is dismanteled.