• KROTOS

    The KROTOS test facility is a relatively small scale experimental installation dedicated to the study of: (a) molten fuel-coolant pre-mixing either with prototypic reactor melts or simulants such as alumina up to 5 kg; (b) progression and energetics of spontaneous and triggered fuel-coolant interactions (vapor explosions).

  • PACTEL

    The PACTEL facility is designed to model the thermal-hydraulic behavior of VVER-440 type pressurized water reactors currently used in Finland. These reactors have several unique features that differ from other PWR designs

  • KAJET

    The experimental programme named KAJET is being performed to investigate features of a pressurized melt jet and the interaction with substratum material. Compact melt jets, rather than a spray-type melt release, are simulated using iron and aluminium oxide instead of corium. The melt is generated by a thermite reaction.

  • REKO

    The REKO-3 test facility allows the investigation of catalyst samples inside a vertical flow channel under well defined conditions comprising gas mixture, flow rate and inlet temperature.

  • ISTP

    This programme sets out to reduce uncertainties when evaluating the environmental release of radioactive products such as iodine or ruthenium following a core meltdown accident in a pressurised water reactor (PWR).

  • PAKS

    The OECD-IAEA Paks Fuel Project aimed to support the understanding of fuel behaviour in accident conditions on the basis of analyses of the Paks-2 event. Numerical simulation of the most relevant aspects of the event and comparison of the calculation results with the available information was carried out between 2006 and 2007.

  • Epicur

    The Epicur programme (physicochemical studies on confined iodine under irradiation) aims at providing experimental data to validate the chemical models for iodine in the reactor containment under accident conditions. These models are integrated into the Iode model of the Astec computer code, jointly developed by IRSN and GRS.

  • LIVE

    Facility consists of the hemispherical test vessel, a volumetric heating system in the test vessel to simulate the decay heat, a heating furnace to generate and pour the simulated corium melt, and a multitude of instrumentation to characterize the status of the melt.

  • VERCORS

    The VERCORS programme, which involves tests with short fuel-rod samples, has proved to be a rich source of information regarding FP release and tranport.

  • PREMIX

    The PREMIX experiments have been performed to study the premixing of sizable amounts of very hot oxidic melts with water when being released as a jet in a reasonably characterized way and with full optical access. Alumina at 2600 K from a thermite reaction was used to simulate the corium melt.

  • DEFOR

    The aim of the DEFOR (Debris Bed Formation) program is clarification of the phenomena that govern formation of the debris bed in different scenarios of corium melt release into a deep water pool and quantification of the debris bed properties related to coolability.

  • SIMECO

    SIMECO program at KTH was performed to investigate the heat transfer of natural convection in an internal heated liquid pool, simulating a molten corium pool which may be formed in the reactor lower plenum during a severe accident.

Home

About us

About us

At present time the JRC is engaged in the management of this new version of the STRESA tool to secure the European Union storage for severe accident experimental data and calculations.

View more

Use of Stresa

Use of STRESA

Only registered users may access and make use of the features available in this new version of STRESA. If you are already registered, just login using your ECAS credentials and start using the information system.

If you are not registered yet, or you are having troubles with the login, please contact the administrator.

Discover more about STRESA

Facilities map

Click on the map points to access the facilities