• PARIS

    The general experimental procedurewas to establish the desired composition of gases in 1-L glass flasks, optionally to add surface coupons, to irradiate the glass flasks at given dose rates until the desired doses were reached, and to subsequently determine the final air radiolysis products concentrations by an off-line method.

  • ECO

    In case of a steam explosion, e.g. as a consequence of a severe reactor accident, part of the thermal energy of the melt is transferred into mechanical energy. At Forschungszentrum Karlsruhe, the ECO experiments are being directed to measure the conversion factor under well-defined conditions. The programme was launched in 2000.

  • CHIP

    The CHIP programme aims to reduce the level of uncertainty on radioactive iodine releases during a core meltdown accident in a nuclear reactor. The programme results will also be used to better define the means and measures to be implemented in order to limit such releases.

  • HIPE

    Two-phase flow test facility was constructed to study the applicability of Particle Image Velocimetry (PIV) and Wire-Mesh Sensors (WMS) for different types of single- and two-phase flows

  • REKO

    The REKO-3 test facility allows the investigation of catalyst samples inside a vertical flow channel under well defined conditions comprising gas mixture, flow rate and inlet temperature.

  • STORM

    The STORM (Simplified Test On Resuspension Mechanism) facility was designed and operated by JRC-Ispra to work with high concentration of soluble and insoluble aerosol materials (up to 25 g/m3), a wide range of aerosol compositions, size distribution and density and high carrier gas and steam flow rate (about 1kg/s).

  • PREMIX

    The PREMIX experiments have been performed to study the premixing of sizable amounts of very hot oxidic melts with water when being released as a jet in a reasonably characterized way and with full optical access. Alumina at 2600 K from a thermite reaction was used to simulate the corium melt.

  • CODEX

    Complex measurements were performed at the integral high temperature test facility CODEX (COre Degradation Experiment) between 1995-2002 with electrically heated UO2 fuel rod bundles.

  • DEFOR

    The aim of the DEFOR (Debris Bed Formation) program is clarification of the phenomena that govern formation of the debris bed in different scenarios of corium melt release into a deep water pool and quantification of the debris bed properties related to coolability.

  • HORIZON

    The test section of the facility consists of a scaled-down model of VVER-440 steam generator, which has a bundle of 38 tubes with inlet and outlet chambers (hot and cold chamber, respectively), and a secondary side with the steam outlet line but without droplet separators and steam dryers.

  • DISCO-C

    The DISCO-C facility serves to investigate melt dispersal from the reactor pit when the reactor pressure vessel lower head fails at low system pressure of less than 2 MPa. The fluid dynamics of the dispersion process is studied using model fluids, water or bismuth alloy instead of corium, and nitrogen or helium instead of steam.

  • KROTOS

    The KROTOS test facility is a relatively small scale experimental installation dedicated to the study of: (a) molten fuel-coolant pre-mixing either with prototypic reactor melts or simulants such as alumina up to 5 kg; (b) progression and energetics of spontaneous and triggered fuel-coolant interactions (vapor explosions).

Home

About us

About us

At present time the JRC is engaged in the management of this new version of the STRESA tool to secure the European Union storage for severe accident experimental data and calculations.

View more

Use of Stresa

Use of STRESA

Only registered users may access and make use of the features available in this new version of STRESA. If you are already registered, just login using your ECAS credentials and start using the information system.

If you are not registered yet, or you are having troubles with the login, please contact the administrator.

Discover more about STRESA

Facilities map

Click on the map points to access the facilities