• HORIZON

    The test section of the facility consists of a scaled-down model of VVER-440 steam generator, which has a bundle of 38 tubes with inlet and outlet chambers (hot and cold chamber, respectively), and a secondary side with the steam outlet line but without droplet separators and steam dryers.

  • QUENCH

    A research program on reflood of an overheated core and corresponding topics is running at KIT, including large scale bundle tests at IAM-WPT , various kinds of separate-effects tests at IAM-AWP , model development and code application.

  • DEFOR

    The aim of the DEFOR (Debris Bed Formation) program is clarification of the phenomena that govern formation of the debris bed in different scenarios of corium melt release into a deep water pool and quantification of the debris bed properties related to coolability.

  • ECO

    In case of a steam explosion, e.g. as a consequence of a severe reactor accident, part of the thermal energy of the melt is transferred into mechanical energy. At Forschungszentrum Karlsruhe, the ECO experiments are being directed to measure the conversion factor under well-defined conditions. The programme was launched in 2000.

  • PEARL

    Launched in 2007, the "Debris bed reflooding" (ex-PEARL) experimental research program aims to better understand the behaviour of steam and water flow in a porous medium composed of solid particles at very high temperature under conditions representative of a core melt accident (or severe accident).

  • PWR PACTEL

    The PWR PACTEL test facility is designed and constructed in 2009 to be used in the safety studies related to thermal hydraulics of pressurized water reactors with EPR type vertical steam generators

  • PREMIX

    The PREMIX experiments have been performed to study the premixing of sizable amounts of very hot oxidic melts with water when being released as a jet in a reasonably characterized way and with full optical access. Alumina at 2600 K from a thermite reaction was used to simulate the corium melt.

  • VITI

    VITI (‘‘VIscosity Temperature Installation’’) facility has been developed to measure viscosity, density and surface tension on corium up to 2600 C by aerodynamic levitation. But it is also used as small crucibles heating for material interactions tests. Samples of less than 100 g can be studied in VITI.

  • DISCO-H

    The DISCO-H test facility was set up to perform scaled experiments that simulate melt ejection scenarios under low system pressure in Severe Accidents in Pressurized Water Reactors (PWR).

  • PPOOLEX

    Condensation studies at LUT started with an open pool test facility (POOLEX) modeling the suppression pool of the BWR containment. During the years 2002-2006, the facility had several modifications and enhancements as well as improvements of instrumentation before it was replaced with a more versatile PPOOLEX facility in the end of 2006

  • DISCO-C

    The DISCO-C facility serves to investigate melt dispersal from the reactor pit when the reactor pressure vessel lower head fails at low system pressure of less than 2 MPa. The fluid dynamics of the dispersion process is studied using model fluids, water or bismuth alloy instead of corium, and nitrogen or helium instead of steam.

  • MISTRA

    The MISTRA facility is a steel cylindrical vessel with a top flat cap and a curved bottom. The internal volume is 99.5m3, the internal diameter - 4.25m, the height - 7.4m. The vessel is thermally insulated, but the wall temperature is not controlled.

Home

About us

About us

At present time the JRC is engaged in the management of this new version of the STRESA tool to secure the European Union storage for severe accident experimental data and calculations.

View more

Use of Stresa

Use of STRESA

Only registered users may access and make use of the features available in this new version of STRESA. If you are already registered, just login using your ECAS credentials and start using the information system.

If you are not registered yet, or you are having troubles with the login, please contact the administrator.

Discover more about STRESA

Facilities map

Click on the map points to access the facilities