• ISTP

    This programme sets out to reduce uncertainties when evaluating the environmental release of radioactive products such as iodine or ruthenium following a core meltdown accident in a pressurised water reactor (PWR).

  • MOZART

    The Mozart analytical test program, conducted from 2005 to 2007, was dedicated to the study of oxidation in air of nuclear fuel cladding.

  • PACTEL

    The PACTEL facility is designed to model the thermal-hydraulic behavior of VVER-440 type pressurized water reactors currently used in Finland. These reactors have several unique features that differ from other PWR designs

  • ECO

    In case of a steam explosion, e.g. as a consequence of a severe reactor accident, part of the thermal energy of the melt is transferred into mechanical energy. At Forschungszentrum Karlsruhe, the ECO experiments are being directed to measure the conversion factor under well-defined conditions. The programme was launched in 2000.

  • KROTOS

    The KROTOS test facility is a relatively small scale experimental installation dedicated to the study of:

  • DEFOR

    The aim of the DEFOR (Debris Bed Formation) program is clarification of the phenomena that govern formation of the debris bed in different scenarios of corium melt release into a deep water pool and quantification of the debris bed properties related to coolability.

  • DISCO-C

    The DISCO-C facility serves to investigate melt dispersal from the reactor pit when the reactor pressure vessel lower head fails at low system pressure of less than 2 MPa. The fluid dynamics of the dispersion process is studied using model fluids, water or bismuth alloy instead of corium, and nitrogen or helium instead of steam.

  • PAKS

    The OECD-IAEA Paks Fuel Project aimed to support the understanding of fuel behaviour in accident conditions on the basis of analyses of the Paks-2 event. Numerical simulation of the most relevant aspects of the event and comparison of the calculation results with the available information was carried out between 2006 and 2007.

  • Epicur

    The Epicur programme (physicochemical studies on confined iodine under irradiation) aims at providing experimental data to validate the chemical models for iodine in the reactor containment under accident conditions. These models are integrated into the Iode model of the Astec computer code, jointly developed by IRSN and GRS.

  • RECI

    The aim of the RECI (RECombiner & Iodine) program was to quantify the iodide → iodine conversion in realistic conditions of recombiner operation, albeit under the following constraints: the experiments were to be performed with non-radioactive substances, and without hydrogen.

  • PREMIX

    The PREMIX experiments have been performed to study the premixing of sizable amounts of very hot oxidic melts with water when being released as a jet in a reasonably characterized way and with full optical access. Alumina at 2600 K from a thermite reaction was used to simulate the corium melt.

  • FARO

    FARO (Furnace And Release Oven) experimental facility began the experiments of the LWR-MFCI phenomena in 1990 in collaboration with several reactor safety research organizations from European Union member countries and with the participation of the United States Nuclear Regulatory Commission.

Home

About us

About us

At present time the JRC is engaged in the management of this new version of the STRESA tool to secure the European Union storage for severe accident experimental data and calculations.

View more

Use of Stresa

Use of STRESA

Only registered users may access and make use of the features available in this new version of STRESA. If you are already registered, just login using your ECAS credentials and start using the information system.

If you are not registered yet, or you are having troubles with the login, please contact the administrator.

Discover more about STRESA

Facilities map

Click on the map points to access the facilities