• PREMIX

    The PREMIX experiments have been performed to study the premixing of sizable amounts of very hot oxidic melts with water when being released as a jet in a reasonably characterized way and with full optical access. Alumina at 2600 K from a thermite reaction was used to simulate the corium melt.

  • RECI

    The aim of the RECI (RECombiner & Iodine) program was to quantify the iodide → iodine conversion in realistic conditions of recombiner operation, albeit under the following constraints: the experiments were to be performed with non-radioactive substances, and without hydrogen.

  • HIPE

    Two-phase flow test facility was constructed to study the applicability of Particle Image Velocimetry (PIV) and Wire-Mesh Sensors (WMS) for different types of single- and two-phase flows

  • ARISG

    The ARISG-I was developed to estimate the aerosol deposition in the near-field of tube breach under dry conditions. It was based on ‘filter concept’, which means that aerosol flowing through a bundle of obstacles is submitted to forces that tend to clean up the gas by removing particles onto obstacle surfaces.

  • PARIS

    The general experimental procedurewas to establish the desired composition of gases in 1-L glass flasks, optionally to add surface coupons, to irradiate the glass flasks at given dose rates until the desired doses were reached, and to subsequently determine the final air radiolysis products concentrations by an off-line method.

  • LIVE

    Facility consists of the hemispherical test vessel, a volumetric heating system in the test vessel to simulate the decay heat, a heating furnace to generate and pour the simulated corium melt, and a multitude of instrumentation to characterize the status of the melt.

  • VITI

    VITI (‘‘VIscosity Temperature Installation’’) facility has been developed to measure viscosity, density and surface tension on corium up to 2600 C by aerodynamic levitation. But it is also used as small crucibles heating for material interactions tests. Samples of less than 100 g can be studied in VITI.

  • SIMECO

    SIMECO program at KTH was performed to investigate the heat transfer of natural convection in an internal heated liquid pool, simulating a molten corium pool which may be formed in the reactor lower plenum during a severe accident.

  • PACTEL

    The PACTEL facility is designed to model the thermal-hydraulic behavior of VVER-440 type pressurized water reactors currently used in Finland. These reactors have several unique features that differ from other PWR designs

  • FARO

    FARO (Furnace And Release Oven) experimental facility began the experiments of the LWR-MFCI phenomena in 1990 in collaboration with several reactor safety research organizations from European Union member countries and with the participation of the United States Nuclear Regulatory Commission.

  • HORIZON

    The test section of the facility consists of a scaled-down model of VVER-440 steam generator, which has a bundle of 38 tubes with inlet and outlet chambers (hot and cold chamber, respectively), and a secondary side with the steam outlet line but without droplet separators and steam dryers.

  • Epicur

    The Epicur programme (physicochemical studies on confined iodine under irradiation) aims at providing experimental data to validate the chemical models for iodine in the reactor containment under accident conditions. These models are integrated into the Iode model of the Astec computer code, jointly developed by IRSN and GRS.

Home

About us

About us

At present time the JRC is engaged in the management of this new version of the STRESA tool to secure the European Union storage for severe accident experimental data and calculations.

View more

Use of Stresa

Use of STRESA

Only registered users may access and make use of the features available in this new version of STRESA. If you are already registered, just login using your ECAS credentials and start using the information system.

If you are not registered yet, or you are having troubles with the login, please contact the administrator.

Discover more about STRESA

Facilities map

Click on the map points to access the facilities